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N o n l i n e a r  b i r th  and  dea th  processes  wi th  one  var iable  are  cons idered .  T h e  
genera l  mas t e r  equa t i ons  descr ib ing these  processes  are  ana lyzed  in t e rms  
o f  their  e igenmodes  a n d  e igenvalues  us ing  the  m e t h o d  of  a W K B  approxi -  
ma t i on .  F o r m u l a s  for  the  densi ty  o f  e igensta tes  are  obta ined .  T h e  lower 
lying e i genmodes  a re  ca lcula ted  to invest igate  long- t ime  re laxat ion ,  such  
as re laxa t ions  o f  me tas t ab le  a n d  uns t ab le  states.  A n o m a l o u s  accumula t i on  
o f  the  lower  ly ing e igenvalues  is s h o w n  to exist w h e n  the  sys t em is infini- 
tes imal ly  c lose  to a crit ical or  ma rg i na l  s tate.  The  general  resul ts  ob ta ined  
are  appl ied  to Some ins t ruc t ive  examples ,  such  as the  kinet ic  W e i s s - I s i n g  
m o d e l  and  a s tochas t ic  m o d e l  o f  non l inea r  chemica l  react ions.  
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1 .  ENTRODUCTION 

Relaxation phenomena in a large system have been recognized to be impor- 
tant in many branches of  science. The basic method to understand those 
phenomena is the consideration of deterministic differential equations (DDE) 
such as macroscopic transport  laws or kinetic laws in which fluctuations are 
neglected. In a nonlinear system the D D E  is nonlinear and may have multiple 
stationary states under certain conditions. ~3) In this approach, when an 
initial state is one of the stationary states the system stays at that state for- 
ever even if the state is asymptotically unstable or metastable. Those un- 
physical results are, of  course, caused by the neglect of  fluctuations. 
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In order to take fluctuations into consideration, a stochastic approach 
has to be envisaged. There are two different stochastic approaches, the 
Langevin method and the approach using a birth and death process. The 
former has no clear physical justification except in simple cases such as 
linear ones or near equilibrium. The latter is more transparent and satis- 
factory, and therefore we will consider birth and death processes from 
nOW on.  

In a previous paper (1~ we developed a general approximate theory for 
relaxation and fluctuation phenomena of macrovariables. In this theory, 
propagation of the extensive property of the nonequilibrium probability 
distribution plays an essential role and the method of the system-size expan- 
sion (2~ becomes powerful. Time-dependent behavior of the mean values and 
the fluctuations of macrovariables can be calculated with the evolution equa- 
tions. (~ The evolution equation of the mean values is given by the DDE 
and has a stationary solution at each extremum of a free-energy-like func- 
tion calculated by the equilibrium distribution. It has been shown by Suzuki 
that the extensive property of the nonequilibrium distribution propagates 
only within a time interval of O(~2~ where ~2 is the size of the system. (5~ 
Therefore, the short-time behavior is almost completely described by the 
theory. It is a crucial point of the theory developed by Kubo e t  al. ~ that 
ordering of the magnitudes of the system size and the time scale is fixed. 
The same difficulty appears in the deterministic theory. In the case where the 
initial state is asymptotically unstable the instability of the system appears 
as the divergence of the variance of the fluctuations. However, the relaxation 
of the metastable state cannot be treated within our previous theory. (~ 

We will restrict our attention in this paper to nonlinear stationary birth 
and death processes with one variable. A master equation describing such a 
process is a differential-difference (or difference) equation in continuous (or 
discrete) time. A few simple models can be solved analytically2 In most 
models the master equation is formally expressed by a Kramers-Moyal 
expansion and approximated by a Fokker-Planck equation. These approxi- 
mation procedures are in general invalid, especially in far-from-equilibrium 
situations, as was shown in the previous paper. (1~ In this paper the master 
equation is analyzed as a differential-difference equation by a method for 
treating large perturbations developed by Bethe a number of years ago. (7) 
This method is equivalent to a WKB approximation for difference equations. 
In order to apply the method to birth and death processes, we will assume 
that the transition probabilities obey detailed balance. 

Most eigenmodes have large eigenvalues of O(~2), which contribute to 
a short-time relaxation. We will analyze in some detail the lower-lying 

8 For example, the Ehrenfest model and the Alkemade diode model are solved analyti- 
cally. Some quantum models are treated in Ref. 6. 
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eigenmodes, i.e., the eigenmodes of the lower eigenvalues, since they are 
important in long-time relaxation such as the relaxation of unstable and 
metastable states. The order of accumulation of the lower-lying eigenvalues 
in the thermodynamic limit is considered in the case when the system is 
infinitesimally close to a critical or marginal point. Some of the results in 
this paper have already been presented in the previous one. However, they 
are shown again to make the present paper self-consistent. 

After introducing the master equation and discussing its properties in 
Section 2, we summarize the method for treating large perturbations in 
Section 3. We then apply this method to the master equation and obtain the 
eigenmodes and the eigenvalues in Section 4. Relaxation times of unstable 
and metastable states are calculated in Section 5. In Section 6 the general 
results obtained in the previous sections are applied to some examples which 
have been discussed previously by a number of authors. 

2. PRELIMINARIES 

We assume that a macrovariable X is a discrete stochastic variable 
obeying a stationary birth and death process. Then, its probability distribu- 
tion P(X, t) satisfies a master equation of the form 

(a /a t )e (x ,  t) = ~ ,  w ( x  - ,., , . )P(x  - r, t) - ~ .  w ( x ,  , . )e(x ,  t) (1) 

where W(X, r) is a transition probability per unit time from X to X + r. 
It is assumed that each transition takes place in an infinitely short time 
interval, and that the transition probability can be normalized by a system 
size f~,~ i.e., 

W(X, r) = Ow(x, r) (2) 

where x = X/f~ is a normalized intensive macrovariable corresponding to X. 
If a unique statistical equilibrium Pe(X) exists for the process, the 

transition probabilities must be conditioned by it, i.e., 

~,  w ( x ,  , .)Po(x) = Z,  w ( x -  r, r ) e X x -  ,') (3) 

We assume in this paper that the transition probabilities obey the stronger 
condition of detailed balance 

W(X, r)P,(X) = W(X + r, - r )Pe(X + r) (4) 

for each possible value of r. 

4 The assumption was made in Ref. 1. For chemical reactions a mathematical discus- 
sion is given by Kurtz2 
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From the condition (4) we can write the transition probabilities in the 
form 

W(X, r) = W(X I X + r)P~/2(X + r)PZl/2(X) 

= W(X I X + r) exp �89 + r) - Oe(X)] (5) 

where W is symmetric, i.e., 

W ( X  I X + r) = W ( X  + r I x )  (6) 

and the equilibrium distribution can be expressed in terms of a free-energy- 
like function O~(X) or 4~(x) such that 

P,(X)  = const x exp O~(X) = const x exp[f2G(X/f~)] (7) 

A nonequilibrium probability distribution P(X, t) will be transformed with 
P~( X)  into 

~b(X, t) = Pg'lJ2(X)P(X, t) (8) 

which gives a symmetrized master equation 

(e/3t)~b(X, t) = - ~ "  W(X,  r)~b(X, t) + ~ W ( X  - rlX)~b(X - r, t) (9) 

We will write Eq. (9) in a vector form 

(a/St)~(t)  = - rq4t)  

where 

(10) 

and 

I ~  W(ron, kro), n = m 
I'.m = (12) 

[ -  W(ron]rom), n v a m 

where r = ron and r0 denotes the smallest number of "un i t s"  that change in 
a one-step transition, i.e., number of spins or number of molecules. The 
transition matrix V does not depend on time since we have assumed the pro- 
cess to be stationary. An eigenvector ~j  and its corresponding eigenvalue 
hj of V can be obtained by the eigenvalue equation.  

r~b s -- Aj~bj (13) 

From the definition of V it is clear that the lowest eigenvalue ~o is zero and 
the corresponding eigenvector d~o is given by 

(d?o). = P~/2(ron) (14) 

[~b(t)]~ = ~b(ron, t) (11) 
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Using the eigenvectors @j of I-, we obtain the solution of Eq. (10) as 

q , ( t )  = 
J 

where 

(15) 

py = (~j, ~(0)) (16) 

From Eq. (15) we can write the solution P(X, t) as 

P(X, t) = P~(X) + ~ pf-a~P~12(X)(~j(X) (17) 
J > 0  

The transition matrix F can easily be shown to be a symmetric, semipositive 
definite form from its definition. All eigenvalues of [- are therefore real and 
nonnegative, (~ and we can obtain the following general conclusion. If  a 
master equation of a system is described by transition probabilities that 
obey a condition of detailed balance, there do not exist any circulation 
motions in the system. 

3. A M E T H O D  FOR LARGE P E R T U R B A T I O N S  

The master equation (l) is obtained in the form of a differential-difference 
equation in the last section. It can be expressed by the Kramers-Moyal 
expansion, which is an infinite-order differential equation and where one 
assumes that the expansion converges. In this paper, the difference equation 
(13) will be directly analyzed by a method for large perturbations developed 
by Bethe in 1938. <7~ The method is equivalent to a WKB approximation for 
difference equations. We summarize in this section the method presented 
in Bethe's classic paper with slight modifications in order to apply it to 
birth and death processes. 

The matrix elements of F will be denoted by 

V,, = W(n) (18) 

I~,,,_k = r ,+~, ,  = --Ak(n + Jrk) (19) 

and 

= A (n) (2O) 

The difference of the diagonal elements 

A(n + Jr) = [W(n + I) - W(n)[ (21) 

will be called the "spacing." For simplicity, we assume all matrix elements 
to be real, which is true in most birth and death processes. The following 
assumptions are made for the matrix elements: 
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I. Regularity assumption; the matrix elements A and the spacings A 
shall be smooth functions of n, i.e., 

[Ak(n + 1) -- Ak(n)[ << A~(n), for all k (22) 

[• + 1) - A(n)l << A(n) (23) 

II. Magnitude assumption; for a given n, at least one of the A's shall 
be large compared with the corresponding spacing, i.e., 

[Ak(n + �89 >> [W(n + k) - W(n)[, for at least one k (24) 

The latter property is the origin of the term "large perturbations." 
Using a new notation, we can rewrite the eigenvalue equation (13) in 

the form 

M 

~b(n)[W(n) - ~] = ~ '  r + k)Ak(n + �89 (25) 
k = M  

where ~ is the eigenvalue, M is the maximum number of possible transitions 
per unit time, and the prime at the sum over k means omission of k = 0. 

To solve the eigenvalue difference equation (25) we will use the WKB 
method. 

From Eq. (14) the eigenfunction Co(n) corresponding to the lowest 
eigenvalue 2, = 0 can be rewritten as 

~bo(n) = Co(n) exp[�89 

where ~e(n), given by Eq. (A.5), is the sum of slowly varying functions of n 
and Co(n) is a slowly varying function of n. We will be able to express the 
eigenfunction ~b(n) in the form 

r  Re[c(n) exp F f(,,) d,, ] (26) 

where Re means real part, and c and f are assumed to be slowly varying 
functions of n. Substituting Eq. (26) into Eq. (25), we obtain 

M 

2 ~ A~(n)cosh[kf(n)] = W(n) - ~ (27) 
1r 

from the zeroth-order terms of the derivative with respect to n, and 

e(n) = ~ kAk(n) sinh[kf(n)] (28) 

from the first-order terms, where ~, is a constant. 



Relaxation Mode Analysis of Nonlinear Birth and Death Processes 175 

3.1. A Tr id iagonal  M a t r i x  Case 

When only one-step transitions exist, all off-diagonal elements vanish 
except A~(n) and the transition matrix 1" is a tridiagonal matrix. The ele- 
ments shall be subject to the conditions I and II [Eqs. (22)-(24)] and to the 
convergence condition 

]Al(n)t < �89 near the boundaries (29) 

The boundary conditions of ~b(n) are 

~b(nxow - 1) = O, ~b(nup + 1) = 0 (30) 

where nlo. and nup are the lower and upper limits of n, respectively. 
We define a "quasipotential" V(n) by 

V(n) = [W(n) - )tl/2A~(n) (31) 

and classify the regions of n into three types by the value of V(n): 

-1  < V(n) < 1 (32a) 

V(n) > 1 (32b) 

V(n) < - 1 (32c) 

The forms of the eigenfunctions ~b(n) in the different regions are as follows: 
(a) In the region of type (32a), the eigenfunction is given by 

~b(n) = ~[Al(n) sin v(n)] -1/2 cos (v(v) dv (33a) 
J 

where 

v(n) = cos -1 V(n) (34a) 

(b) In the regions of type (32b), the eigenfunction is an exponential 
function 

1 ~b(n) = ~,[A~(n) sinhf(n)] -112 exp + f(v) dv (33b) 

where 

f(n) = cosh -1 V(n) (34b) 

(c) In the regions of type (32c), we have the solution 

[ ;  ] ~b(n) = 9'(-  1)"[Al(n) sinhf(n)]-1/2 exp + f(v) dv (33c) 

where 

f(n) = cosh-l[ V(n)] (34c) 
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In  the regions close to the boundaries,  case (b) or (c) occurs because 
o f  the convergence condition. The signs o f  the exponents o f  Eq. (33b) and 
(33c) must  be chosen to satisfy the boundary  condit ion (30). In  the other 
regions the eigenfunction is o f  a different form f rom the expressions (33a)- 
(33c), depending u p o n  the value o f  V(n).  These different forms of  the expres- 
sion are made continuous by the W K B  connection. We will give two exam- 
ples o f  the simplest cases. 

Example  1. We will consider the simplest case when the regions o f  
nlow < n < n~ and n2 < n < n~p are that  Of type (32b), and the region 
n~ < n < n2 belongs to the type (32a). F r o m  Eq. (33b) we can easily obtain 
expressions for the eigenfunction as 8 

7'[Al(n) s inhf (n) ]  -112 exp - v) dv , nlow < n < nt 

~b(n) = ,~ 

[9/[A~(n)  sinhf(n)l-Zt2exp[-(,~2_ . f ( v )  dv], nup > n > n2 

(35) 

The W K B  connect ion o f  Eq. (35) into the region nl < n < n2 is 

] ~b(n) = 2~,[Al(n)sin v(n)] - l l z  cos v(v) dv - - ~  , nz < n <ng.  (36) 
EL' R 1 

Then we have two conditions, one o f  which is a " q u a n t u m  condi t ion"  

f ,2 v(n) dn = �89 l = Tit(1 + nonnegative integer (37) 
1 

to determine the eigenvalue, the other  o f  which is the condit ion for  the two 
constants  

V = ( -  1)'~ (38) 

Example  2. The second simplest example is the case when the regions 
o f  nlow < n < nl, n2 < n < n3, and n4 < n < nup are o f  the type (32b) and 
when the regions o f  nl < n < n2 and ns < n < na belong to the type (32a). 

5 To satisfy the boundary condition, the correct expressions of the eigenftmction have 
to be 

71[Az(n) sinhf(n)] -112 sinh f(v) dr] , nlow ~ n < nz 
l ow  - 1 

r 

[U ] L~,2[AI(n) sinhf(n)] -lt2 sinh f(v) dr] , n~p >~ n > n2 

instead of Eq. (35). However, if nl and n2 are macroscopically separated from the 
boundaries, then we can approximately use Eq. (35) as the eigenfunction. The error 
of the approximation is of the order of exp[-  I~ow-~ f (n)  dn], or exp[-- j-~, + z f (n)  dn]. 
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From the boundary condition, the eigenfunction in the regions of niow < 
n < nl and n4 < n < nuo is given in the form of Eq. (35). Using the WKB 
connection to the eigenfunction at each turning point, we can obtain the 
" q u a n t u m "  condition 

9'1 cos 01 = 9"2e -b sin 02, 9'1e -~ sin 01 = 9'2 cos 02 (39) 

where 

f:' 01 = v(n) dn, 02 = v(n) an, b = an (40) 
1 8 

I f  the region of  n2 < n < n3 is macroscopically wide and is of the order 
of f~, it will be a good approximation to consider the two regions of type 
(32a) as independent "potential  wells." Within this approximation we can 
apply the quantum condition in each region and obtain 

01 = (11 + �89 02 = (/2 + �89 (41) 

where both/1 and/2 are nonnegative integers. Corrections to this approxima- 
tion become important only when two eigenfunctions localizing at different 
potential wells are degenerate. This case will be considered in a later section. 

3.2. Nontr id iagonal  M a t r i x  Cases 

These cases are more complicated than the previous ones. We will 
consider only one simple case. The others can be calculated in a straight- 
forward manner. 

When there exist one-step and two-step transitions, the off-diagonal 
matrix elements of k = 1, ,2 are the only nonvanishing ones. Equation (27) 
can be written as 

2Al(n) coshf(n)  + 2Al(n) cosh 2f(n) = W(n) - • (42) 

T he re  exists one more type of  region in this case than in the previous one. 
We redefine a quasipotential V(n) by 

1 
V(n) = ~ ( - A l ( n )  + {A12(n) + 4A2(n)[W(n) - a + 2A2(n)]} 1/2) 

(43) 
and classify the regions into four types as follows: 

(a) V(n) is real and V(n) < 1, i.e., 

2A2(n) -- 2Al(n) < W(n)  - h < 2Al(n) + 2A2(n) 

_A12(n) + 8A22(n) 
4A2(n) 

< W(n)  - A < 2A:t(n) + 2A2(n) 

ifAl(n) > 4A2(n) 
(44) 

ifAl(n) < 4A2(n) 
(45) 
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(b) V(n) is real and V(n) > 1, i.e., 

W(n) - A > 2Al(n) + 2A2(n) (46) 

(c) V(n) is real and V(n) < - 1, i.e., 

Ala(n) + 8A22(n) 
- 4A2(n) < W(n) - A < 2A2(n) - 2Al(n) 

only if Al(n) > 4A2(n) (47) 

(d) V(n) is complex, i.e., 

W(n) - A < -[A12(n) + 8A22(n)]/4A2(n) (48) 

The "wave number"  f(n) corresponding to each type of regions (a)-(d) is 
expressed as follows: 

u(n) = O, cos v(n) = V(n) (49a) 

cosh u(n) = V(n), v(n) = 0 (49b) 

cosh u(n) = - V(n), v(n) = ~ (49c) 

c o shu ( n ) = -~  2 A2 + "~2 ] + 2 A2 z] f - A T o  ' 

+ if A1 < 4A= 
(49d) 

- if A1 > 4A2 

cos v(n) = A1 
4Az cosh u(n) 

Here u(n) and v(n) are real and imaginary parts of f(n) ,  respectively. The 
procedure of obtaining the eigenfunction by the WKB connection is the same 
as that in the previous case, so we will not write down the explicit expression 
for the eigenfunction. We will show only the quantum condition within the 
approximation of  independent potential wells, which is given by 

f~ v(n) dn = rr(l + c) (50) 
a) 

where (a) indicates the integral is over each region of type (a), l is a non- 
negative integer, and e is constant. If the region of type (a) is surrounded by 
those of  type (b), then e = 1/2. 

4. GENERAL ANALYSIS OF EIGENMODES 

We will present here a general analysis of  the eigenmodes and their 
eigenvalues. Some of these results have already been presented in a previous 
paper. <~) 
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We will give a formula for the density of eigenstates O(X), where ,~ = e~ 
and E = f~-1. Most of the eigenmodes have large eigenvalues, of the order 
of ~). These modes contribute to the short-term behavior of the relaxation 
of the system from nonequilibrium initial states. On the other hand, if we 
focus on the long-time behavior, such as the relaxation of an unstable state 
or a metastable state, we must analyze in detail the lower lying eigenmodes 
whose eigenvalues are equa l to  or less than O(f~~ The lower lying eigen- 
modes are localized around the stationary states (stable or unstable), in 
contrast to the other modes, which have an oscillatory behavior over a 
macroscopic range. 

In a critical or marginal case the system shows an anomalous behavior, 
such as a critical slowing down. Such an anomaly is caused by the divergence 
of o(X) at X = 0 which means that a macroscopic number of eigenstates 
accumulate to the lowest eigenstate in the thermodynamic limit. 

From the quantum condition given in the last section we can obtain 
the density of eigenstates as 

cos- ~ V(x, X) dx (51) 
p ( x )  = o, 

where a normalized macrovariable x = ~ron is used and V(x) is expressed 
by V(x, X) to show the X dependence of V explicitly. 

The quasipotential V defined by Eq. (31) or (43) can be written in terms 
of an E expansion: 

(i) Tridiagonal matrix case: 

V(x,X)= cosh[-~ ~ ' (x)]  2~(x------) + ~ r cosh r  

Ero~'(X) sinh[ro 1 + 2 all(x) -~e ' ( x )  + O ( e  2) (52) 

(ii) Pentadiagonal matrix case: 

V(x, X) = cosh[�89 - �89 + 4d2(x ) cosh[�89 -1 

+ �88 cosh[�89 + �89 sinh[�89 

x {2ro2~(x)q~e"(x) sinh[�89 

+ ~ ' ( x )  + 4d2'(x)cosh[�89 

x {~(x)  + 4 d d x  ) cosh[�89 -1 + O(e 2) (53) 

Here normalized matrix elements ~ ( x )  = (1/e)Ae(x/ero) (k = 1, 2) are used. 
Substituting the lowest order term of Eq. (52) or (53) into Eq. (51), we will 
obtain the formula of the density of eigenstates as follows: 
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(i) Tridiagonal matrix case: 

• 

(ii) Pentadiagonal matrix case: 

Here the integrations in Eqs. (54) and (55) have to be done over all regions 
of type (a). 

Using the expansion form of ~e(x) around each stationary state x = x~ ~) 

4 e ( X  ) = C ~ )  1 I"~(i)[v - -  X f ) ) 2  1 C ( | ) [ X  - -  X f ) ) 3  1 ["~(t)(v - -  X f ) ) 4  
-- T ~ I K  ~ -- ~ 2 k -- ~ 3  k -~ "'" 

(56) 

we can classify the stationary states x~ ~ by the coefficients: 

(a) A stable equilibrium, C~ ) > 0. 
(b) An unstable equilibrium, Ci ~ < 0. 
(c) A marginal equilibrium, C~ )' = 0 and C~ ~ ~ 0. 
(d) A critical equilibrium, C~ ) = 0, C~ > = 0, and ,--3c'c~) r  

From Eqs. (54) and (55) we obtain the asymptotic form of p(X) at 
X = 0 a s  

in both cases, where 

D~) = m + 1 
2 m  

p(X) ~_ ~D~X ~l-~t~- (57) 
t 

_ _  2<1 - , . ) / ~  r r 2 ~ ,  tx(Oal - ( ~  + 1)/2ml C(Ol - 1/m B ( 5 8 )  L 0 Zk s J J  I m l m 

and where the sums must be carried out over all stationary states. The type 
of each stationary state is denoted by m = 1, 2, or 3 corresponding to the 
case (a), (b), (c), or (d). The constant Bm is given below in Eq. (73). The 
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derivation of Eq. (57) will be given in a later part of this section. From 
Eq. (57) we can conclude that in a case when the system has a critical equi- 
librium (m = 3) the density of eigenstates diverges at X = 0 such that 

p(X) oc X- 1/3, X---> 0 (59) 

and that in a case when the system has a marginal equilibrium (m = 2) 

p(X) oc X- 1t4, X-+ 0 (60) 

In some cases the divergence of p(X) occurs at a finite value of X, but such 
divergence does not correspond to any thermodynamic phenomena. 

We will now consider the lower lying eigenmodes. In this case the eigen- 
value A is equal to or greater than O(E~ so we have to take the terms of the 
order of ~ in Eq. (52) or (53). If we take the lowest order terms in the Taylor 
expansion of V ( x )  around x~ ~ we will have the same equation 

~)~ ekr~ ( x  - x~')) m-1  + r~ (x - x~) 2~ 
V ( x )  = 1 2dKx~O ) ~ ~ (61) 

in both cases. Here m = 1, 2, or 3, corresponding to the case (a), (b), (c), 
or (d). 

Within the approximation of  the independent potential wells, the quan- 
tum condition can be written as 

1 {1 - IV(x)]2} 112 d x  = rrero t + (62) 

at each potential well. Here the integration limits are determined by 

V ( x l )  = V ( x 2 ) =  1 (63) 

From Eq. (61) we have the relations 

Ix1.= - x~ ')] = 0 ( ,  1/~= + 1)) (64) 

V ( x )  = 1 - -  O(E), x l  < x < x2 (65) 

Equation (62) can be approximated by 

F ' ~ [1 - V(x)] ~/2 d x  = 7rEro(l + �89 (66) 
"J X l  

In the case of m = 1, we can easily integrate Eq. (66) and obtain the expres- 
sion for the eigenvalues as 

A~ ~ = ro2.~,lx"~lC")l~ ~ Jl 1 1 for m = 1 (67) 

where 

0, 1, 2, 3,... for C~ ) > 0 

l = 1,2, 3 ,4 , . .  for C~ ) < 0 
(68) 
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In the cases of m = 2, 3, we use the variables transformed by 

[ 4~ ]~,~m 
A = ~,(rn- i ) / (m+l)  X - -  X~ f) = r  [ro2[C~]2zCi(x~*~)J ~7 (69) 

Then we can write Eq. (66) in the form 

2 [1 + mS~ ~-~ sgn(C~ ~) - ~2~1~/2 d~ = 2~rS(l + �89 (70) 
1 

where 

S -- 2[ro2~(~t~)/4~] ~m+ 1~/2m I C~I 1/m (71) 

If  ~ is sufficiently large, we can neglect the term including S in the integrand 
of Eq. (52), and obtain the simple expression for the eigenvalues as 

al~> ~_ ~Cm- ~1~,. + ~>l~'~lCm + l~ro~(x~o)(�89 + i)(2rrlBm)2ml<m + i~ (72) 

where 

Bm = 4 (1 - V2m)112 d~ 7 (73) 

The constants Bm (m = 2, 3) are expressed by the use of the first kind of the 
entire elliptic integral K(k)  as 

B2 = T K = 3.496... (74) 

~ = 4.794... (75) 

When the integer I in Eq. (72) is sufficiently large, the neglect of the terms 
in going from (70) to (72) can be justified. The expressions for the eigenvalues 
are obtained as 

h~ m~ oc ei/a/4/a in a marginal case (76) 

~t c~ oc ~/2la/2 in a critical case (77) 

The asymptotic form of p(X) at X = 0 is derived from Eq. (72). From (77) 
[or (76)] we can conclude that the number of the lower lying eigenmodes is 
of the order of f2 ~/* (or fl  ~/4) in a critical (or marginal) case. 

In the case when the system differs infinitesimally from the critical or 
marginal case, how many lower lying eigenmodes exist ? To answer the ques- 
tion we will investigate three cases (Fig. 1). In each case the coefficients of  
Eq. (56) can be taken as follows: 
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Fig. la. The distribution of the lower lying A, At A2 
eigenvalues when a system has only one stable ~ x x 
equilibrium. 0 

Fig. lb .  The distribution of the lower lying 
eigenvalues when a system is critical, marginal, 
or infinitesimally close to a critical (or mar-  
ginal) state. The distribution is discrete for a 
finite system and becomes a cont inuum in the 
thermodynamic limit. 

Fig. lc. The distribution of the lower lying 
eigenvalues when a system has one stable, one 
metastable, and one unstable equilibrium. The 
eigenvalues whose eigenmodes are localized 
mainly at the stable, metastable, and unstable 
equilibria are denoted by x, /x,, and �9 re- 
spectively. 

~ . i , . ~ . ~ . ~  - . . . . . .  
~///////////////////////////////////. - - - 
I 

0 

o 

(I) The cases infinitesimally close to a critical one:  

(a) C1 = rid1, C2 = 0, C3 = O(e ~ ~ 0 (78) 

(b) C1 = 0, C2 = ,~ C3 = O(r ~ # 0 (79) 

(II)  The case infinitesimally close to a marginal one:  

C1 = , ' 4 ,  C~ = O(~ ~ # 0 (80) 

In  case (Ia), Eq. (61) is given by  

EA el +~ ro2dl 
V ( x )  = 1 2d~(x~) 4 

[ 3r~ ,2~r~ xs)2 + r~ x~)6 (81) - U 

Using the t ransformat ion 

X - -  X s  = t i e  a 

and compar ing  the order o f  the terms in the integrand of  Eq. (66), we will 
have two cases: 

(i) The case when 0 < b < �89 

3 + 2 a =  1, A =  ~ - o  

(ii) The case when 3 > �89 
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o 
Fig. 2. The exponent v as a function of the exponent > 

~" for case I(a). 

~ 1  ~ ; 

Fig. 3. The exponent v as a function of the exponent p 
for case I(b). 

i 

~. Fig. 4. The exponent v as a function of the exponent 
o ~r ~- for case II. 

In  the former  case the expression for  the eigenvalue is given by 

;~l oc ~1 

The latter case reduces to the critical one. In  case (i) we have to treat 
carefully the terms of  Eq. (81) when A is O(~~ i.e., I is O(~-~). At  this time 
the higher power terms become dominan t  when ~ < 8 < �89 We denote here 
by fF  the order  o f  the number  O(() o f  lower lying eigenvalues, where 
O(Az) ~< O(f2 ~ for 1 = 1, 2, 3 ..... E. The exponent  v can be obtained as a 
funct ion o f  ~ (see Fig. 2). 

Using similar procedures,  we can express the exponent  v as a function 
o f  8 or  p in the other  cases. The results are shown in Figs. 3 and 4. 

5. RELAXATION T I M E S  OF METASTABLE A N D  UNSTABLE 
STATES 

In this section we discuss the relaxation times f rom metastable and  un- 
stable states. As we have shown in the last section, the quasipotential V(x) 
has a well at each stat ionary state even if the state is unstable. However,  
all eigenmodes localized near the unstable state have finite eigenvalue, so 
they decay for  sufficiently long time. On  the other hand, each stable state 
has one eigenmode with a zero eigenvalue within the approximat ion of  the 
independent  potential wells. In  other words,  there exists n-fold degeneracy 
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in the lowest eigenmode, where n is the number of stable states. Within our 
approximation we cannot distinguish between metastable states and a stable 
one. We therefore have to find the correct lower lying eigenmodes by con- 
sidering corrections to our approximation. 

For simplicity, we will consider the case when a system has one un- 
stable state xu, one metastable state xm, and one stable state xe. Other cases 
can be calculated by applying the method presented below. 

We already know that the true lowest eigenmode Co(X) is nondegenerate 
and given by Eq. (14). It has two peaks, one at x = Xe and one at Xm. The 
ratio of the heights of these peaks is given by 

[~r lm exp[(1/2E)(A e -- Am)] (82) 

where Ae and Am denote the free energy barrier of the stable state and that 
of the unstable state, respectively, i.e., 

ae = 4Xx~) - 4,(xu), Am = 4,(xm) -- 4,(x~) (83) 

Using Eq. (39) and the properties of Co(x), we obtain the following solutions 
of Eq. (40): 

[C1(x~)]1'2 e x p [ 1  (A~ - Am)] (84) 

e b =[[ddx(xe)dd2(xm)ll/2[Cz(xe)Cl(xm)lZ/'exp[~--e(daeq-Ara)],sd12(Xu ) ] [ Cz2(xu ) ] (85) 

"Jr [ ~2(Xu) lll2[C12(xu)CI(Xm)] 11't _Ale ̀ 
0~(A~ = 2 -  [ ~ ' t ~ x m ) ]  [" ~ ] e , (86) 

f (87) 05( o) = - [ ] 

where x~ < x, < x2, xa < Xm < X,, and 0~(A) is used to show the A depen- 
dence of 0~. 

The second lowest eigenmode ~(x)  can easily be constructed because it 
has one node and is orthogonal to Co(x). The solutions of Eq. (40) are given 
by 

[d~l(Xe) l[Cx(xe)']lt2 [ 1 (A e _ ~m)] (88) 

e b = [the same as Eq. (85)] 

rr [~(X~)~(Xm)]~'2[C~2(x~)CI(Xm)]I' ' ,_a,/e (89) 

, (90) 
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O 

, ~ o = 0  

. . . . . . . . .  2 v _  7- 

Fig. 5. The shape of the lowest eigenmode 
~bo(x), where Yl = O@ -zt4) and I12 = O{e -lj4 
exp[--(l/2c)(A e -- At,,)]}. 

Using Eqs. (86), (87), (89), and  (90) and taking into account  that  h 0 = 0 
and  (d'~/dh'~)O~(A) = 0 (n >t 2), we obtain  

a l  = 

([s~C~(xm)]~'z^_a,,, , [aC~(xe) l l ; z _  A , , l  (91) 

This result shows that the second lowest eigenvalue ~1 is of the order of 
e - Amlr 

We can easily show that  the third lowest  e igenmode ~b2(x) is, usually 
localized mainly  at  the unstable state. The rough  shapes of  the three lowest 
e igenmodes are given in Figs. 5-7. 

N o w  we consider the relaxation times of  unstable and metas table  states. 
The nonequi l ibr ium probabi l i ty  distr ibution P ( x ,  t )  has been expressed by 
the e igenmodes in Eq. (17). I f  we focus on the long-t ime behavior ,  it becomes 
a good  approx imat ion  to take only the lower lying eigenmodes.  

First  we will obta in  the relaxation t ime % of  an unstable state. In  this 
case we can take the three lowest  e igenmodes ~bo, ~bl, and ~b2 at  a sufficiently 
long time. The  lowest, eigenvalue of  the e igenmode localized mainly  a round  
the unstable state is A2, so tha t  the % is given by  

% = 1/h2 = [ro=aC~(xOlCl(x~)l] -~ (92) 

For  an initial 8-function distribution 

P(x, 0) = 3(x - x~,) (93) 

&- 

o: 

I 

a, = 0(e -r~') 

~,,,r 
- - ~ ]  ~t(  "X M ~ "  

Fig. 6. The shape of the second lowest eigen- 
mode ~bl(x), where ya = O(r -l/4) and lY41 = 
0{r zt, exp[(1/20(A, _ Am)]). 
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Fig. 7. T h e  shape  of  the  th i rd  lowest  o 
e igenmode  4Ja(x), where  Y5 = O(E-zt4), 
ly61 = O(~-~4exp[-(1/2,) Ad}, and lY~I = 
O{,-~t4 exp[ - - (1 /2 , )  Am]}. 

,I.~ = O(C) 

the coefficients Pl and P2 in Eq. (17) will be O(eC~o-~m TM) and O(eae/20, 
respectively, and P(x, t) at x = x,  is given by 

P(x~, t) = O(,-1/2e-a2 t) (94) 

At time r~, P(x, t) extends uniformly over the metastable and stable states. 
After the time r~, P(x, t) has peaks at the metastable and stable states and 
can be written as 

P(x, t) = Pe(x) + plp~/2(x)~z(x) (95) 

At times t >> %, the metastable state also will have relaxed. 
It must be mentioned that the time "re discussed by Kubo et aI. (~) and 

others, C~~ is not the relaxation time of the unstable state in the usual sense, 
where 

re = - ( 1 / 2 h 2 ) I n ,  (96) 

At time re, P(x, t) already has had peaks of O(e-1/2) at metastable and 
stable states and its plateau expanding over the metastable and stable states 
is only of O(~~ 

Second, we consider the relaxation time rm of the metastable state. The 
relaxation time of the eigenmode ~z(x) is much longer than that of the 
other eigenmodes localized mainly around the metastable state. Therefore, 
we can conclude that the relaxation time ~'m is equal to that of ~z, i.e., 

rm = l/A1 = O ( e ~ / ' )  (97) 

where Az is given by Eq. (91). At times t >> rm, one then has 

e(x,  t) " P,(x) (98) 

6. SOME EXAMPLES 

We have analyzed general nonlinear birth and death processes in the 
previous sections. In this section we will take two specific examples and 
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show how our analysis works. As the first example we consider a kinetic 
Weiss-Ising model in which phase transitions occur. The second example is 
a stochastic model for a nonlinear chemical reaction with one variable. 

In order to verify the accuracy of the general analysis we have compared 
our approximate results with the exact results obtained for the Alkemade 
diode. (1L~2~ This comparison showed that our approximate analysis was in 
good agreement with the exact results for f~ large. 

6.1. A Kinetic Weiss- lsing Model  (z'1~'14) 

The model is a birth and death process of a system composed of N 
Ising spins. The transition probabilities of the spin flip are assumed to be 

[ o ] 
W(N+ - N_,  - 2 )  = N+ exp - t z  - ~ ( N +  - N_) 

(99) 

W(N+ - N_,  +2) = N_ exp /z + _~(N+ - N_) 

for one-flip transitions a n d  

W(N+ - N_,  - 4 )  = N+(N+ - l) exp[ -2 t z  - -~ (N+ N_)] 

(loo) 
W(N+ - N_, +4) N - ( N -  - 1 )  exp[2tz + 222-~ - N _ ) ]  

for two-flip transitions, where N+ and N_ are the numbers of plus spins 
and minus spins, respectively, and where the external magnetic field t~ and 
the molecular field coefficient, are scaled by temperature 

I~ = tzoH/kT, ~ = J[kT 

The free-energy-like function ~e(x) is found to be 

~be(x ) = const + /~x  + ; x 2 1 +2 x In (1 + x) 1 2-- x In (1 - x) (101) 

where x = (N+ - N _ ) / N a n d  - 1  ~< x ~< 1. 
The equilibrium states are given by solutions of the equation 

x = tanh(tz + ~x) (102) 

In a ferromagnetic region there are three solutions for Eq. (102), two of 
which are stable (or metastable) and are denoted by xe (or xm) and one of 
which is unstable, x~. In a paramagnetic region only one stable solution 
exists and is denoted by xe. 
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The off-diagonal elements of  the transit ion matr ix I', ~r and ~ ( x ) ,  
are given by 

z~C~(x) = �89 - x2) ~12 (103) 

z~2(x) = �88 - x 2) (104) 

I f  we consider the case (i) when only one-flip transitions occur, i.e., ~r = 0, 
the diagonal elements w(x) and the quasipotential  V(x) are given by 

w(x) = cosh(/~ + aX)  - x sinh(~ + aX)  - g(x) (105) 

w(x )  - X 
V(x) = [(1 + E) 2 - xSl~12e -'~ (106) 

In the case (ii) when both  one-flip and two-flip transitions exist, the 
t rans i t ion  matrix V becomes a pentadiagonal  matrix,  and w(x) and V(x) 
are given by 

1 + x  2 
w(x) = cosh(t~ + ax) - x sinh(~ + ax) + ~ cosh(2~ + 2~x) 

- x sinh(2/~ + 2ux) (107) 

2"-1,2 ~ [  1 { 1 1(1  x2)e-2~r V(x) = ( 1  - x )  e [ - ~ +  + - 

( I -  x~) 1'2 }1,2) 
+ [(1 + T)~-= ~z] l~  [w(x) - X] (108) 

The lower lying eigenmodes are common  for  bo th  cases. F rom Eq. (67) 
we can obtain the lower lying eigenvalues of  this model  as 

I~x? - ~ + 11 
2(l + 3i.u) ~ _2 xT2~72 ' i = e, m, u ferromagnet ic  region 

A~ ~> = (109) 
,~ l ax~ 2 - a + 1 
~'" (~ _2 x]~i72 ' i = e paramagnetic  region 

where I is a nonnegative integer and 3,.~ is the Kronecker  delta. 
For  critical and marginal  states we obtain the following expressions 

for  the eigenvalues f rom Eq. (72): 

A~ c) = �89 critical state (a = 1, / ,  = O) 
(110) 

;~m> = 2~/a(c~ __ 1)~la(2rr/B2)~l%lla141a marginal  state (~ > 1, t~ = IL~) 
(111) 
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Here Bz and Ba are given by Eqs. (74) and (75), respectively, and 

1 e l t2  + (~  _ 1)1/2 
/z c = - [c~(cc - 1)] 1/2 + ] In ~zt2 -- (~ 1)z/e (112) 

The expressions for the density of eigenstates are different for the two 
cases. In case (i) we obtain from Eq. (54) that 

1 f x2)112 - 1/2[(1 x2) 1/2 X]- 1/2 p(~)= ~ dx[(1 - + g ( x ) -  X] - - g(x) + 

(113) 

Using Eq. (55) we can express O(,~) for case (ii) as 

p(X) = dx (1 - xZ) lj2 + g(x) 1 + 2g(x)] 

X ]-~,9[ 1 + 2g(x) 
• (1 - - g ( x )  + 1 + i g ( x ) ]  L2 l 

X] - 1/2 

(114) 
where the function g(x) is defined in Eq. (105). 

The integration of Eq. (113) or (114) has to be performed numerically. 
In case (i) the results of Eqs. (109) and (113) have also been obtained by 
Ruijgrok and Tjon by use of a spin operator algebra314) The integration of 
Eq. (113) was carried out numerically for some cases and the shapes of p(X) 
are presented in Ref. 14. 

In the ferromagnetic region with the magnetic field /~ > 0, the state 
Xm is metastable and xu is unstable. From Eqs. (92) and (97) the relaxation 
times of these two states are given by 

(1 - x=2) 1/2 (115) 
" ~  = 2 1 ~ x =  2 - ~ + 11 

= 2 ( 1  - x e 2 ) ~ 1 2 l ~ x .  2 - ~ + 11 ~/2 Tm 

x (axe 2 - ~ + 1)1/4(~xm ~' - a + 1)t14e NA- (116) 

where Am is given by Eqs. (101) and (83). 
The result of Eq. (116) differs from that obtained by Gri~iths et aU la) 

by a small numerical factor. Their calculation was made on the basis of the 
Gaussian approximation. 

6.2. A Stochast ic  Mode l  for  a Nonl inear  Chemical  React ion 

There are many different types of chemical reactions even within a 
one-variable system (see, e.g., Ref. 15). Since we cannot discuss all of  them 
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in this paper,  we choose the following nonlinear chemical reaction as a 
specific example(~6>: 

k~ > 3X A + 2 X <  
k2 (117) 

k3 > X A <  
k4 

The concentrat ion o f  the reactant  A is taken to be constant  as par t  o f  
an infinite reservoir. We formulate  the stochastic rate equations for  this 
reaction in the s tandard way. <~5> The probabil i ty distribution P(nx, t) obeys 
the master equation (1), the transit ion probabilities o f  which are given by 

W(nx, 1) = (k~/f~2)nA(nx - 1)nx + kanA (118) 

W(nx, - 1 )  = (k2/f22)nx(nx - 1)(nx - 2) + k,nx  (119) 

Here the number  o f  molecules A and X are given, respectively, by nA and 
nx and the volume dependence o f  the reaction rates is shown explicitly. 

F r o m  (A.6) in the appendix we obtain the free-energy-like funct ion 

,bo(x), ~ 

(k lx  2 + ka)a 
Ce'(x) = In (k2x 2 + k4)x 

k la  
Ce(x) = const  + x In + 1) x In x + x In klx2 + k8 

k2x 2 + k~ 

(120) 

2741,2 _lrtk x ,  -1 _ 2/k4~l ,~. tan_l [ /k2~l ,x ]  + tan I tS)  xl  k21 
(121) 

where a = nail2 and x = nx/a.  
The extrema of  ~e(x) are located at the real, positive solutions of  the 

cubic equat ion 

k2x 3 - k lax  2 + k4x - ksa = 0 (122) 

All cases, such as the one-stable-equilibrium case, a marginal  case, a 
critical case, a case with two stable states and one unstable state, etc., occur 
depending upon  the values o f  the rate constants k2 th rough  k~ and the 
initial concentrat ion o f  A. 

6 In chemical kinetics the free-energy-like function Ce(x) should not be confused with 
the equilibrium free energy of chemical reaction. The former is defined by the equi- 
librium probability distribution of the number of molecules considered in the stochastic 
model. The latter is related to the ratio of the rate coefficients through the equilibrium 
constant. 
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We define a constant D by 

D = 4k13kaa ~ - k12k42a 2 + 27k22ka2a 2 - 18klk2kak4a 2 + 36k~k~ a (123) 

and distinguish the following cases: 

(i) If  D > 0, there is one real, positive solution x,  of Eq. (122), and 
the state x = Xe is stable. 

(ii) If  D = 0, there is one triple root xc of Eq. (122), and the state 
x = xc is critical. 

(iii) If  D < 0, there are three real, positive solutions xl, x2, and Xa of 
Eq. (122), where xl < x2 < xa. The state x = x2 is unstable, and of the 
states x = x~ and xa is stable and the other is metastable depending upon 
the value of the parameters above. For simplicity, we assume that xl is 
metastable. The marginal case also occurs, but we do not discuss it. 

The off-diagonal elements ~r and the quasipotential V ( x )  are given 
by 

d l ( x )  = ( k l a x  2 + kaa)l l2(kzx 3 + kax)  112 (124) 

k z x ( x  - e)(x - 2e) + k~ax (x  - E) + k4x  + ksa  - X (125) 
V ( x )  = 2 [k la ( x  - ~e)(x - �89 + kaa] 112 

x [/c2(x S - ,* ,S)(x - ~ , )  + / q ( x  + � 8 9  

where �9 = f~-l. 
The lower lying eigenvalues are obtained from Eq. (67) as 

az kaksxe4 + 3kskaxeS - klk~xeS + kak4 
= k l x ,  S + ka 1 case (i) (126) 

,~') = V'2k2xaJ2(2rr/Ba)a/%l/Sl a/S case (ii) (127) 

,~') = k s ( x ,  - xu)(xe - Xm)l ] 

2t~'O = k s ( x ,  - x,,)(x,, xm)(l + 1)I case (iii) (128) 

•}m) = k s ( x  e - -  Xm)(Xu Xm)l 

From Eqs. (54), (124), and (125) the density of eigenstates p(X) is obtained as 

if ~ [2(klax= + kaa)ll2(kaxa + kax)l/S o(x)  = g, 

- k z x  8 - k l a x  = - k4x  - k3a + X]-,/= 

x [2(Ic~ax S + l~a)*~s(tc=x ~ + Ic~x) ~= 

+ k2x  a + k , a x  S + k4x  + kaa - X] -*j= (129) 
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In case (iii) the relaxation times of the unstable and metastable states 
are obtained from Eqs. (92), (97), and (128), 

1 
r ,  = k 2 ( x ,  - x ~ ) ( x ~  - x,~) (130) 

k2 "vll2"t"ll4('v ~u ~ , ,  ,--e - -  X u ) ~ t ' ( X J  - -  X J ) a l ~ ( X e  - -  Xr,) 1'~ 
T ~  ~ . . . . . . .  

~r x~J4(x" + x , , ) l l ~ ( x ,  + xm) l l2  e aa,. (131) 

where A,, is given by Eqs. (83) and (121). 
The two different kinds of nonlinear birth and death processes discussed 

above show the wide applicability of the present theory. If the free-energy- 
like function 4e(x) exists for the process, long-time behavior such as a critical 
slowing down and relaxations of  metastable and unstable states can be 
obtained by our theory. Nonexponential decay of the critical slowing down 
corresponds to the anomalous accumulation of the lower lying eigenvalues. 
The relaxation time of the unstable state is finite, i.e., independent of s 
It takes a very long time, of O(eaa-), for the metastable state to relax to the 
equilibrium state, where A m is the free energy barrier of the metastaNe 
state and is given by Eq. (83). 

7. C O N C L U D I N G  R E M A R K S  

We have considered nonlinear stationary birth and death processes with 
one variable. Model systems described by such processes have been shown 
to yield information about relaxation and fluctuation phenomena of macro- 
systems. The eigenmodes and the eigenvalues of the master equation have 
been obtained through the use of a WKB approximation. The long-time 
relaxations were studied via the lower lying eigenmodes which are located 
at each of the extrema of the free-energy-like function. The one-variable 
case has now been essentially completely solved in this and a preceding work. 
Many additional interesting phenomena appear in the case of open, multi- 
variable systems. These nonlinear multivariable systems cannot be analyzed 
by the method used in this paper because of the lack of a theory for the 
WKB approximation for equations with many variables. For such systems 
we still do not know how to treat the long-time relaxations. 

A P P E N D I X  

In this appendix we give the explicit expression for ~e(x) and for the 
symmetrized master equation of an arbitrary birth and death process. These 
expressions will be limited, for the reasons given in the body of the paper, 
to the case of a one-variable system with one-step transitions. 
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The master equation for such a process is given by 

0 
NP(n, t) = - [B (n )  + D(n)]e(n, t) + B(n - 1)e(n - 1, t) 

+ O(n + 1)e(n + 1, t) (A.1) 

where B(n) and D(n) denote the birth and death rates, respectively, and 
n = 0, 1, 2 ..... N. Both transition probabilities are assumed to satisfy Eq, (2). 
The equilibrium probability distribution Pe(n) can be obtained from (A. 1) as 

1~--I N 

Pe(n) = C I-~ B(k) I-~ D(l) for 1 ~< n ~< N -  1 (A.2) 
k=O I=~+i 

N-I N 

P,(O) = C ~- I B(k), Pc(N) = C r -  ~ m(l) (A.3) 
k = O  l = l  

where 

N N-I N-I n--I N 

C-1 = 1-I D(l) + I-I  B(k) + ~ I-I  B(k) I - I  D(1) (A.4) 
1 = 1  k = 0  ~ ,=1  k = 0  l = n + l  

The free-energy-like function can be expressed as 

n-i N 

qb,(n) = const + ~ In B(k) + ~ In D(1) (a.5) 
k = 0  / = n + l  

( 
x 

4,(x) = const + 20 dx' In b(x') + dx' In d(x') (A.6) 

where x = n/N, b(x) = (1/N)B(n), and d(x) = (1/N)D(n). 
Using P,(n), we can transform P(n, t) into r t) by Eq. (8), and obtain 

the symmetrized master equation 

(O/Ot)r t) = --[B(n) + D(n)]r t) + [B(n - 1)D(n)lal~r - 1, t) 

+ [B(n)D(n + 1)]1/2r + 1, t) (A.7) 
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